Hi all,
How can I increase the number of decimal places in yticks ?
Nils
from matplotlib.ticker import ScalarFormatter
formatter = ScalarFormatter(useMathText=True,useOffset=False)
formatter.set_scientific(True)
formatter.set_powerlimits((-12,12))
print dir (formatter)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.yaxis.set_major_formatter(formatter)
import numpy as np
A=np.array([[ 1 , 0.000000E+00 , 5.234141E-06],
[ 2 , 1.000000E+00 , 5.233310E-06],
[ 3 , 2.000000E+00 , 5.232660E-06],
[ 4 , 3.000000E+00 , 5.231808E-06],
[ 5 , 4.000000E+00 , 5.231277E-06],
[ 6 , 5.000000E+00 , 5.230664E-06],
[ 7 , 6.000000E+00 , 5.230423E-06],
[ 8 , 7.000000E+00 , 5.230136E-06]])
ax.plot(A[:,1],A[:,2])
plt.show()

Hi all,
How can I increase the number of decimal places in yticks ?
One way is to install mpl from git master. The ScalarFormatter handles this situation better now:
In [15]: print '\n'.join([tl.get_text() for tl in ax.get_yticklabels()])
\\mathdefault\{0\.0000052300\}
\\mathdefault\{0\.0000052305\}
\\mathdefault\{0\.0000052310\}
\\mathdefault\{0\.0000052315\}
\\mathdefault\{0\.0000052320\}
\\mathdefault\{0\.0000052325\}
\\mathdefault\{0\.0000052330\}
\\mathdefault\{0\.0000052335\}
\\mathdefault\{0\.0000052340\}
\\mathdefault\{0\.0000052345\}
Eric
···
On 02/23/2012 01:13 AM, Nils Wagner wrote:
Nils
from matplotlib.ticker import ScalarFormatter
formatter = ScalarFormatter(useMathText=True,useOffset=False)
formatter.set_scientific(True)
formatter.set_powerlimits((-12,12))
print dir (formatter)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.yaxis.set_major_formatter(formatter)
import numpy as np
A=np.array([[ 1 , 0.000000E+00 , 5.234141E-06],
[ 2 , 1.000000E+00 , 5.233310E-06],
[ 3 , 2.000000E+00 , 5.232660E-06],
[ 4 , 3.000000E+00 , 5.231808E-06],
[ 5 , 4.000000E+00 , 5.231277E-06],
[ 6 , 5.000000E+00 , 5.230664E-06],
[ 7 , 6.000000E+00 , 5.230423E-06],
[ 8 , 7.000000E+00 , 5.230136E-06]])
ax.plot(A[:,1],A[:,2])
plt.show()
------------------------------------------------------------------------------
Virtualization& Cloud Management Using Capacity Planning
Cloud computing makes use of virtualization - but cloud computing
also focuses on allowing computing to be delivered as a service.
http://www.accelacomm.com/jaw/sfnl/114/51521223/
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
matplotlib-users List Signup and Options