Code attached for autoscaled text around graph

All,

 Attached, and below, is public domain code for making variable-sized plots with autoscaled text that exactly fits the available visual plot space, useful for web sites where users choose output files with different sizes.  Examples are at the bottom of the file.

      James R. Phillips
      2548 Vera Cruz Drive
      Birmingham, AL 35235 USA
      email: zunzun@...709...
      [http://zunzun.com](http://zunzun.com)

Entered into the public domain 20 March 2009

James R. Phillips

2548 Vera Cruz Drive

Birmingham, AL 35235 USA

email: zunzun@…709…

http://zunzun.com

import numpy as np
import math, matplotlib
matplotlib.use(‘Agg’) # must be used prior to the next two statements
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

def DetermineOnOrOffFromString(in_String):
tempString = in_String.split(’_’)[-1:][0].upper() # allows any amount of prefacing text
if tempString == ‘ON’:
return True
return False

def DetermineScientificNotationFromString(inData, in_String):
tempString = in_String.split(’_’)[-1:][0].upper() # allows any amount of prefacing text
if tempString == ‘ON’:
return True
elif tempString == ‘OFF’:
return False
else: # must be AUTO
minVal = np.abs(np.min(inData))
maxVal = np.abs(np.max(inData))
deltaVal = np.abs(maxVal - minVal)

    scientificNotation = False
    if (maxVal > 100.0) or (minVal < -100.0) or (deltaVal < .05):
        scientificNotation = True
return scientificNotation

def CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_XName, in_YName, in_UseOffsetIfNeeded, in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded, in_Left, in_Bottom, in_Right, in_Top): # default to lots of room around graph

# a litle more room between x axis and tick mark labels, so not text overlap at the bottom left corner - set this before other calls
matplotlib.rcParams['xtick.major.pad'] = 5+ (float(in_HeightInPixels) / 100.0) # minimum + some scaled

fig = plt.figure(figsize=(float(in_WidthInPixels ) / 100.0, float(in_HeightInPixels ) / 100.0), dpi=100)
fig.subplotpars.update(in_Left, in_Bottom, in_Right, in_Top)
ax = fig.add_subplot(111, frameon=True)

# white background, almost no border space
fig.set_facecolor('w')

xFormatter = fig.gca().xaxis.get_major_formatter()
xFormatter._useOffset = in_UseOffsetIfNeeded
xFormatter.set_scientific(in_X_UseScientificNotationIfNeeded)
fig.gca().xaxis.set_major_formatter(xFormatter)

yFormatter = fig.gca().yaxis.get_major_formatter()
yFormatter._useOffset = in_UseOffsetIfNeeded
yFormatter.set_scientific(in_Y_UseScientificNotationIfNeeded)
fig.gca().yaxis.set_major_formatter(yFormatter)

# Scale text to imagesize.  Text sizes originally determined at image size of 500 x 400
widthRatioForTextSize = float(in_WidthInPixels) / 500.0
heightRatioForTextSize = float(in_HeightInPixels) / 400.0
for xlabel_i in ax.get_xticklabels():
    xlabel_i.set_fontsize(xlabel_i.get_fontsize() * heightRatioForTextSize)
xOffsetText = fig.gca().xaxis.get_offset_text()
xOffsetText.set_fontsize(xOffsetText.get_fontsize() * heightRatioForTextSize * 0.9)
for ylabel_i in ax.get_yticklabels():
    ylabel_i.set_fontsize(ylabel_i.get_fontsize() * widthRatioForTextSize)
yOffsetText = fig.gca().yaxis.get_offset_text()
yOffsetText.set_fontsize(yOffsetText.get_fontsize() * heightRatioForTextSize * 0.9)

x_label = ax.set_xlabel(in_XName)
y_label = ax.set_ylabel(in_YName)
x_label._fontproperties._size = x_label._fontproperties._size * heightRatioForTextSize
y_label._fontproperties._size = y_label._fontproperties._size * widthRatioForTextSize

plt.grid(True) # call this just before returning

return fig, ax

def YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, in_OffsetUsed):
# draw everything so items can be measured for size
canvas = plt.get_current_fig_manager().canvas
canvas.draw()

# some preliminary info
xLabelPoints = ax.set_xlabel(ax.get_xlabel()).get_window_extent().get_points() # [ [x,y], [x,y] ]
yLabelPoints = ax.set_ylabel(ax.get_ylabel()).get_window_extent().get_points() # [ [x,y], [x,y] ], rotated 90 degrees
xTickZeroPoints = ax.get_xticklabels()[0].get_window_extent().get_points()
yTickZeroPoints = ax.get_yticklabels()[0].get_window_extent().get_points()
xTickIndexPoints = ax.get_xticklabels()[len(ax.get_xticklabels())-1].get_window_extent().get_points()
yTickIndexPoints = ax.get_yticklabels()[len(ax.get_yticklabels())-1].get_window_extent().get_points()
currentPoints = ax.bbox.get_points()
maxLeft = currentPoints[0][0]
maxBottom = currentPoints[0][1]
maxRight = currentPoints[1][0]
maxTop = currentPoints[1][1]

# find the most left-ward location
if xTickZeroPoints[0][0] < maxLeft:
    maxLeft = xTickZeroPoints[0][0]
if yTickZeroPoints[0][0] < maxLeft:
    maxLeft = yTickZeroPoints[0][0]
if yTickIndexPoints[0][0] < maxLeft:
    maxLeft = yTickIndexPoints[0][0]
if xLabelPoints[0][0] < maxLeft:
    maxLeft = xLabelPoints[0][0]
if yLabelPoints[0][0] < maxLeft: # 90 degrees
    maxLeft = yLabelPoints[0][0]

# find the most right-ward location
if xTickIndexPoints[1][0] > maxRight:
    maxRight = xTickIndexPoints[1][0]
if xLabelPoints[1][0] > maxRight:
    maxRight = xLabelPoints[1][0]

# find the most bottom-ward location
if xTickZeroPoints[0][1] < maxBottom:
    maxBottom = xTickZeroPoints[0][1]
if xLabelPoints[0][1] < maxBottom:
    maxBottom = xLabelPoints[0][1]
if yLabelPoints[0][1] < maxBottom:
    maxBottom = yLabelPoints[0][1]

# find the most top-ward location
if yTickIndexPoints[1][1] > maxTop:
    maxTop = yTickIndexPoints[1][1]
if True == in_OffsetUsed: # could not find a better way to get this
    yp = ax.get_yticklabels()[0].get_window_extent().get_points()
    maxTop += yp[1][1] - yp[0][1]

newLeft = ax.bbox._bbox.get_points()[0][0] - (float(maxLeft) / float(in_WidthInPixels)) + 0.01
newBottom = ax.bbox._bbox.get_points()[0][1] - (float(maxBottom) / float(in_HeightInPixels)) + 0.01
newRight = ax.bbox._bbox.get_points()[1][0] + (1.0 - (float(maxRight) / float(in_WidthInPixels))) - 0.01
newTop = ax.bbox._bbox.get_points()[1][1] + (1.0 - (float(maxTop) / float(in_HeightInPixels))) - 0.01

# now redraw and check number of X tick marks
canvas.draw()

# Calculate major number of X tick marks based on label size
totalWidth = 0.0
maxWidth = 0.0
numberOfMajor_X_TickMarks = len(ax.get_xticklabels())
for xlabel_i in ax.get_xticklabels():
    w = xlabel_i.get_window_extent().get_points() # the drawn text bounding box corners as numpy array of [x,y], [x,y]
    width = w[1][0] - w[0][0]
    totalWidth += width
    if width > maxWidth:
        maxWidth = width
if totalWidth > (0.95 * ((newRight - newLeft) * float(in_WidthInPixels))): # 0.95 for some spacing between tick labels
    numberOfMajor_X_TickMarks = int(math.floor((0.95 * ((newRight - newLeft) * float(in_WidthInPixels))) / maxWidth))

return (newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks,)

def HistogramPlot(in_DataToPlot, in_FileNameAndPath, in_DataName, in_FillColor, in_WidthInPixels, in_HeightInPixels, in_UseOffsetIfNeeded, in_UseScientificNotationIfNeeded):

# decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to boolean values
scientificNotation = DetermineScientificNotationFromString(in_DataToPlot, in_UseScientificNotationIfNeeded)
useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)

numberOfBins = len(in_DataToPlot) / 2
if numberOfBins > 25:
    numberOfBins = 25
if numberOfBins < 5:
    numberOfBins = 5

# first with 0, 0, 1, 1
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, 0.0, 0.0, 1.0, 1.0)

# histogram of data
n, bins, patches = ax.hist(in_DataToPlot, numberOfBins, facecolor=in_FillColor)

# some axis space at the top of the graph
ylim = ax.get_ylim()
if ylim[1] == max(n):
    ax.set_ylim(0.0, ylim[1] + 1)

newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, False)

# now with scaled
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, newLeft, newBottom, newRight, newTop)

# histogram of data
n, bins, patches = ax.hist(in_DataToPlot, numberOfBins, facecolor=in_FillColor)

# some axis space at the top of the graph
ylim = ax.get_ylim()
if ylim[1] == max(n):
    ax.set_ylim(0.0, ylim[1] + 1)

if  len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
    ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))

fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)

def ScatterPlot(in_DataToPlot, in_FileNameAndPath, in_DataNameX, in_DataNameY, in_WidthInPixels, in_HeightInPixels,
in_UseOffsetIfNeeded, in_ReverseXY, in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded):

# decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to boolean values
scientificNotationX = DetermineScientificNotationFromString(in_DataToPlot[0], in_X_UseScientificNotationIfNeeded)
scientificNotationY = DetermineScientificNotationFromString(in_DataToPlot[1], in_Y_UseScientificNotationIfNeeded)
useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
reverseXY = DetermineOnOrOffFromString(in_ReverseXY)

if reverseXY:
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX, scientificNotationY, 0.0, 0.0, 1.0, 1.0)
    ax.plot(np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]), np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]), 'o') # first ax.plot() is only with extents
    newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX, scientificNotationY, newLeft, newBottom, newRight, newTop)
    if  len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
        ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
    ax.plot(in_DataToPlot[1], in_DataToPlot[0], 'o') # now that autoscaling is done, use all data for second ax.plot()
else:
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY, scientificNotationX, 0.0, 0.0, 1.0, 1.0)
    ax.plot(np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]), np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]), 'o') # first ax.plot() is only with extents
    newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY, scientificNotationX, newLeft, newBottom, newRight, newTop)
    if  len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
        ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
    ax.plot(in_DataToPlot[0], in_DataToPlot[1], 'o') # now that autoscaling is done, use all data for second ax.plot()

fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)

if name in (‘main’, ‘main’):

testData1D = 12345678901.5 + np.random.randn(100)
testData2D = [testData1D, 1000.0 * testData1D + 1500 + 200.0 * np.random.randn(100)]

# note file names
HistogramPlot(testData1D, 'test_histogram_large.png', 'Test Data Name', 'lightgrey',
              1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
             
HistogramPlot(testData1D, 'test_histogram_small.png', 'Test Data Name', 'lightgrey',
              320, 240, 'UseOffset_ON', 'ScientificNotation_ON')
             
ScatterPlot(testData2D, 'test_scatterplot_small.png', 'Test Data X Name', 'Test Data Y Name',
            320, 240, 'UseOffset_ON', 'ReverseXY_OFF', 'ScientificNotation_X_OFF', 'ScientificNotation_Y_OFF')
           
ScatterPlot(testData2D, 'test_scatterplot_large.png', 'Test Data X Name', 'Test Data Y Name',
            1024, 768, 'UseOffset_ON', 'ReverseXY_ON', 'ScientificNotation_X_OFF', 'ScientificNotation_Y_ON')

AutoscaledText.py (12.5 KB)

Thanks for sharing this -- I'm curious about how you've dealt with some of these issues and see if any of them can be brought into the core. Overlapping text has long been something I've wanted to address, but it's difficult to solve and maintain as much flexibility as we currently have.

Running your script, I get this traceback:

Traceback (most recent call last):
  File "AutoscaledText.py", line 236, in <module>
    1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
  File "AutoscaledText.py", line 171, in HistogramPlot
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, 0.0, 0.0, 1.0, 1.0)
  File "AutoscaledText.py", line 75, in CommonPlottingCode
    x_label._fontproperties._size = x_label._fontproperties._size * heightRatioForTextSize
TypeError: can't multiply sequence by non-int of type 'float'
> /wonkabar/data1/scraps/AutoscaledText.py(75)CommonPlottingCode()
-> x_label._fontproperties._size = x_label._fontproperties._size * heightRatioForTextSize

_fontproperties._size can be a CSS size name, such as "medium" or "large", so this line of code won't work. I replaced this with:

    x_label.set_size(x_label.get_size() * heightRatioForTextSize)
    y_label.set_size(y_label.get_size() * widthRatioForTextSize)

which also has the advantage of avoiding private APIs that may change in the future. This seems to work for me, but I don't know if it matches your results.

Mike

James Phillips wrote:

···

All,

     Attached, and below, is public domain code for making variable-sized plots with autoscaled text that exactly fits the available visual plot space, useful for web sites where users choose output files with different sizes. Examples are at the bottom of the file.

          James R. Phillips
          2548 Vera Cruz Drive
          Birmingham, AL 35235 USA
          email: zunzun@…709… <mailto:zunzun@…709…>
          http://zunzun.com

# Entered into the public domain 20 March 2009
# James R. Phillips
# 2548 Vera Cruz Drive
# Birmingham, AL 35235 USA
# email: zunzun@…709… <mailto:zunzun@…709…>
# http://zunzun.com

import numpy as np
import math, matplotlib
matplotlib.use('Agg') # must be used prior to the next two statements
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

def DetermineOnOrOffFromString(in_String):
    tempString = in_String.split('_')[-1:][0].upper() # allows any amount of prefacing text
    if tempString == 'ON':
        return True
    return False

def DetermineScientificNotationFromString(inData, in_String):
    tempString = in_String.split('_')[-1:][0].upper() # allows any amount of prefacing text
    if tempString == 'ON':
        return True
    elif tempString == 'OFF':
        return False
    else: # must be AUTO
        minVal = np.abs(np.min(inData))
        maxVal = np.abs(np.max(inData))
        deltaVal = np.abs(maxVal - minVal)
               scientificNotation = False
        if (maxVal > 100.0) or (minVal < -100.0) or (deltaVal < .05):
            scientificNotation = True
    return scientificNotation

def CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_XName, in_YName, in_UseOffsetIfNeeded, in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded, in_Left, in_Bottom, in_Right, in_Top): # default to lots of room around graph

    # a litle more room between x axis and tick mark labels, so not text overlap at the bottom left corner - set this before other calls
    matplotlib.rcParams['xtick.major.pad'] = 5+ (float(in_HeightInPixels) / 100.0) # minimum + some scaled

    fig = plt.figure(figsize=(float(in_WidthInPixels ) / 100.0, float(in_HeightInPixels ) / 100.0), dpi=100)
    fig.subplotpars.update(in_Left, in_Bottom, in_Right, in_Top)
    ax = fig.add_subplot(111, frameon=True)

    # white background, almost no border space
    fig.set_facecolor('w')

    xFormatter = fig.gca().xaxis.get_major_formatter()
    xFormatter._useOffset = in_UseOffsetIfNeeded
    xFormatter.set_scientific(in_X_UseScientificNotationIfNeeded)
    fig.gca().xaxis.set_major_formatter(xFormatter)

    yFormatter = fig.gca().yaxis.get_major_formatter()
    yFormatter._useOffset = in_UseOffsetIfNeeded
    yFormatter.set_scientific(in_Y_UseScientificNotationIfNeeded)
    fig.gca().yaxis.set_major_formatter(yFormatter)

    # Scale text to imagesize. Text sizes originally determined at image size of 500 x 400
    widthRatioForTextSize = float(in_WidthInPixels) / 500.0
    heightRatioForTextSize = float(in_HeightInPixels) / 400.0
    for xlabel_i in ax.get_xticklabels():
        xlabel_i.set_fontsize(xlabel_i.get_fontsize() * heightRatioForTextSize)
    xOffsetText = fig.gca().xaxis.get_offset_text()
    xOffsetText.set_fontsize(xOffsetText.get_fontsize() * heightRatioForTextSize * 0.9)
    for ylabel_i in ax.get_yticklabels():
        ylabel_i.set_fontsize(ylabel_i.get_fontsize() * widthRatioForTextSize)
    yOffsetText = fig.gca().yaxis.get_offset_text()
    yOffsetText.set_fontsize(yOffsetText.get_fontsize() * heightRatioForTextSize * 0.9)
       x_label = ax.set_xlabel(in_XName)
    y_label = ax.set_ylabel(in_YName)
    x_label._fontproperties._size = x_label._fontproperties._size * heightRatioForTextSize
    y_label._fontproperties._size = y_label._fontproperties._size * widthRatioForTextSize

    plt.grid(True) # call this just before returning

    return fig, ax

def YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, in_OffsetUsed):
    # draw everything so items can be measured for size
    canvas = plt.get_current_fig_manager().canvas
    canvas.draw()
       # some preliminary info
    xLabelPoints = ax.set_xlabel(ax.get_xlabel()).get_window_extent().get_points() # [ [x,y], [x,y] ]
    yLabelPoints = ax.set_ylabel(ax.get_ylabel()).get_window_extent().get_points() # [ [x,y], [x,y] ], rotated 90 degrees
    xTickZeroPoints = ax.get_xticklabels()[0].get_window_extent().get_points()
    yTickZeroPoints = ax.get_yticklabels()[0].get_window_extent().get_points()
    xTickIndexPoints = ax.get_xticklabels()[len(ax.get_xticklabels())-1].get_window_extent().get_points()
    yTickIndexPoints = ax.get_yticklabels()[len(ax.get_yticklabels())-1].get_window_extent().get_points()
    currentPoints = ax.bbox.get_points()
    maxLeft = currentPoints[0][0]
    maxBottom = currentPoints[0][1]
    maxRight = currentPoints[1][0]
    maxTop = currentPoints[1][1]
       # find the most left-ward location
    if xTickZeroPoints[0][0] < maxLeft:
        maxLeft = xTickZeroPoints[0][0]
    if yTickZeroPoints[0][0] < maxLeft:
        maxLeft = yTickZeroPoints[0][0]
    if yTickIndexPoints[0][0] < maxLeft:
        maxLeft = yTickIndexPoints[0][0]
    if xLabelPoints[0][0] < maxLeft:
        maxLeft = xLabelPoints[0][0]
    if yLabelPoints[0][0] < maxLeft: # 90 degrees
        maxLeft = yLabelPoints[0][0]

    # find the most right-ward location
    if xTickIndexPoints[1][0] > maxRight:
        maxRight = xTickIndexPoints[1][0]
    if xLabelPoints[1][0] > maxRight:
        maxRight = xLabelPoints[1][0]

    # find the most bottom-ward location
    if xTickZeroPoints[0][1] < maxBottom:
        maxBottom = xTickZeroPoints[0][1]
    if xLabelPoints[0][1] < maxBottom:
        maxBottom = xLabelPoints[0][1]
    if yLabelPoints[0][1] < maxBottom:
        maxBottom = yLabelPoints[0][1]

    # find the most top-ward location
    if yTickIndexPoints[1][1] > maxTop:
        maxTop = yTickIndexPoints[1][1]
    if True == in_OffsetUsed: # could not find a better way to get this
        yp = ax.get_yticklabels()[0].get_window_extent().get_points()
        maxTop += yp[1][1] - yp[0][1]

    newLeft = ax.bbox._bbox.get_points()[0][0] - (float(maxLeft) / float(in_WidthInPixels)) + 0.01
    newBottom = ax.bbox._bbox.get_points()[0][1] - (float(maxBottom) / float(in_HeightInPixels)) + 0.01
    newRight = ax.bbox._bbox.get_points()[1][0] + (1.0 - (float(maxRight) / float(in_WidthInPixels))) - 0.01
    newTop = ax.bbox._bbox.get_points()[1][1] + (1.0 - (float(maxTop) / float(in_HeightInPixels))) - 0.01

    # now redraw and check number of X tick marks
    canvas.draw()

    # Calculate major number of X tick marks based on label size
    totalWidth = 0.0
    maxWidth = 0.0
    numberOfMajor_X_TickMarks = len(ax.get_xticklabels())
    for xlabel_i in ax.get_xticklabels():
        w = xlabel_i.get_window_extent().get_points() # the drawn text bounding box corners as numpy array of [x,y], [x,y]
        width = w[1][0] - w[0][0]
        totalWidth += width
        if width > maxWidth:
            maxWidth = width
    if totalWidth > (0.95 * ((newRight - newLeft) * float(in_WidthInPixels))): # 0.95 for some spacing between tick labels
        numberOfMajor_X_TickMarks = int(math.floor((0.95 * ((newRight - newLeft) * float(in_WidthInPixels))) / maxWidth))

    return (newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks,)

def HistogramPlot(in_DataToPlot, in_FileNameAndPath, in_DataName, in_FillColor, in_WidthInPixels, in_HeightInPixels, in_UseOffsetIfNeeded, in_UseScientificNotationIfNeeded):

    # decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to boolean values
    scientificNotation = DetermineScientificNotationFromString(in_DataToPlot, in_UseScientificNotationIfNeeded)
    useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)

    numberOfBins = len(in_DataToPlot) / 2
    if numberOfBins > 25:
        numberOfBins = 25
    if numberOfBins < 5:
        numberOfBins = 5

    # first with 0, 0, 1, 1
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, 0.0, 0.0, 1.0, 1.0)
       # histogram of data
    n, bins, patches = ax.hist(in_DataToPlot, numberOfBins, facecolor=in_FillColor)
       # some axis space at the top of the graph
    ylim = ax.get_ylim()
    if ylim[1] == max(n):
        ax.set_ylim(0.0, ylim[1] + 1)

    newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, False)

    # now with scaled
    fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, newLeft, newBottom, newRight, newTop)
       # histogram of data
    n, bins, patches = ax.hist(in_DataToPlot, numberOfBins, facecolor=in_FillColor)

    # some axis space at the top of the graph
    ylim = ax.get_ylim()
    if ylim[1] == max(n):
        ax.set_ylim(0.0, ylim[1] + 1)

    if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
        ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))

    fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)

def ScatterPlot(in_DataToPlot, in_FileNameAndPath, in_DataNameX, in_DataNameY, in_WidthInPixels, in_HeightInPixels,
                in_UseOffsetIfNeeded, in_ReverseXY, in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded):

    # decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to boolean values
    scientificNotationX = DetermineScientificNotationFromString(in_DataToPlot[0], in_X_UseScientificNotationIfNeeded)
    scientificNotationY = DetermineScientificNotationFromString(in_DataToPlot[1], in_Y_UseScientificNotationIfNeeded)
    useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
    reverseXY = DetermineOnOrOffFromString(in_ReverseXY)

    if reverseXY:
        fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX, scientificNotationY, 0.0, 0.0, 1.0, 1.0)
        ax.plot(np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]), np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]), 'o') # first ax.plot() is only with extents
        newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
        fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX, scientificNotationY, newLeft, newBottom, newRight, newTop)
        if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
        ax.plot(in_DataToPlot[1], in_DataToPlot[0], 'o') # now that autoscaling is done, use all data for second ax.plot()
    else:
        fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY, scientificNotationX, 0.0, 0.0, 1.0, 1.0)
        ax.plot(np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]), np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]), 'o') # first ax.plot() is only with extents
        newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks = YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels, in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
        fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY, scientificNotationX, newLeft, newBottom, newRight, newTop)
        if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
        ax.plot(in_DataToPlot[0], in_DataToPlot[1], 'o') # now that autoscaling is done, use all data for second ax.plot()
       fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)

if __name__ in ('main', '__main__'):

    testData1D = 12345678901.5 + np.random.randn(100)
    testData2D = [testData1D, 1000.0 * testData1D + 1500 + 200.0 * np.random.randn(100)]
       # note file names
    HistogramPlot(testData1D, 'test_histogram_large.png', 'Test Data Name', 'lightgrey',
                  1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
                     HistogramPlot(testData1D, 'test_histogram_small.png', 'Test Data Name', 'lightgrey',
                  320, 240, 'UseOffset_ON', 'ScientificNotation_ON')
                     ScatterPlot(testData2D, 'test_scatterplot_small.png', 'Test Data X Name', 'Test Data Y Name',
                320, 240, 'UseOffset_ON', 'ReverseXY_OFF', 'ScientificNotation_X_OFF', 'ScientificNotation_Y_OFF')
                   ScatterPlot(testData2D, 'test_scatterplot_large.png', 'Test Data X Name', 'Test Data Y Name',
                1024, 768, 'UseOffset_ON', 'ReverseXY_ON', 'ScientificNotation_X_OFF', 'ScientificNotation_Y_ON')

------------------------------------------------------------------------

------------------------------------------------------------------------------
Apps built with the Adobe(R) Flex(R) framework and Flex Builder(TM) are
powering Web 2.0 with engaging, cross-platform capabilities. Quickly and
easily build your RIAs with Flex Builder, the Eclipse(TM)based development
software that enables intelligent coding and step-through debugging.
Download the free 60 day trial. http://p.sf.net/sfu/www-adobe-com
------------------------------------------------------------------------

_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

--
Michael Droettboom
Science Software Branch
Operations and Engineering Division
Space Telescope Science Institute
Operated by AURA for NASA